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Abstract: Deep convolutional neural networks (Deep CNNs) have recently demonstrated 
high-quality reconstruction for face image super-resolution. However, as the depth grows, 
more computations are required and it is difficult to train the network. In this paper, a 
highly efficient and faster face image super-resolution method using a piecewise-recursive 
convolution network (PRCN) is proposed. Original low-resolution (LR) images are used as 
the inputs of the proposed model and thus significantly reduce the calculation cost. A 
combination of recursive convolutional networks and skip connection layers are used to 
extract both local and global features of input LR face images. Specially, the number of 
each recursive convolutional layer is optimized to further improve the performance and 
reduce the computation. For image reconstruction, 1×1 convolutional layers are used to 
reduce the dimension of the extracted features. Parallelized CNNs are then applied to learn 
an effective nonlinear mapping from the low-resolution (LR) to the high-resolution (HR) 
features. Experimental results show that the proposed algorithm outperforms the 
state-of-the-art methods, while achieving faster and more efficient computation.  

1. Introduction 

Face recognition technology has been widely used in in intelligent surveillance, identity 
authentication, human-computer interaction and digital entertainment. However, due to the limit of 
intrinsic device factors and the interference of external environmental factors, the obtained face 
images are usually of low resolution. More details are required when such images are applied in 
face recognition. Therefore, super-resolution (SR) technology is processed to transform 
low-resolution (LR) images into high-resolution (HR) images. During the process, the missing high 
frequency details are estimated. 

Recently, Deep Learning (DL) models have been widely used in computer vision due to the 
powerful learning ability. Dong et al. [1] first proposed a deep learning-based SR method to predict 
the nonlinear LR-to-HR mapping. The model, which is called Super-Resolution Convolutional 
Neural Network (SRCNN), significantly outperforms classical non-DL methods. Based on SRCNN, 
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many deep CNN-based methods [2, 3, 4, 5, 6, 7] have been proposed. These methods outperform 
the previous shallow CNN-based methods by a large margin, which reflects the trend of ‘the deeper 
the better’ in SR. 

Despite achieving excellent performance, deep CNNs require large computation and a lengthy 
processing time. To address this drawback, we propose a Piece-Recursive Convolutional Network 
(PRCN) in this paper. As shown in Fig. 1, the proposed method achieves state-of-the-art 
reconstruction performance with at least 10 times lower computational cost. Specifically, PRCN has 
two major algorithmic novelties: 

(1) Piecewise-recursive structure is proposed in PRCN to keep the model compact. The 
recursive structure can enhance the potential representation of the network by increasing depth 
without adding additional parameters. However, with the increase of recursions, the network can be 
difficult to train due to the vanishing/exploding gradients problems. PRCN is relieved from this 
burden by introducing several recursive modules. Each module contains an ordinary convolutional 
layer and a recursive convolutional layer. The number of filters in each module is also optimized 
and thus results in better performance with faster computation.  

(2) A combination of skip connection and network in network are introduced in PRCN. Since the 
local feature is more important than the global feature in SR, each output of ordinary and recursive 
convolutional layers is passed to the reconstruction network via skip connection. All these features 
are then concatenated as the input of the reconstruction network. A parallelized CNN structure [8] is 
used in PRCN. On the one hand, 1×1 convolutional layers can effectively reduce the input 
dimension and thus makes the network more concise. On the other hand, the parallelized structure 
can enhance the learning ability of the network at the cost of less computation compared with the 
chain structure.  

 
Fig. 1 Comparisons between reconstruction performance and computation complexity. The 

complexity of the proposed model is taken as 1.  

10
-2

10
-1

10
0

10
1

10
2

10
3

30.2

30.3

30.4

30.5

30.6

30.7

30.8

30.9

31.0

31.1

Computation complexity

PS
N

R
 (d

B
)

SRResNet

VDSR
DRCN

The proposed
method

ESPCN

SRCNN

90



2. Proposed Method 

2.1 Model Overview 

The proposed model, outlined in Fig. 2, consists of two sub-networks: feature extraction and 
image reconstruction networks. In the feature extraction network, multiple cascaded convolutional 
layers are used to extract the features of the input LR image. The extracted features are then 
connected to the reconstruction network as skip connection. In the image reconstruction network, 
parallelized 1×1 convolutional layers are used to reduce the dimension of concatenated features. 
The last convolutional layer outputs the final LR feature maps of 16 channels (when the scale factor 
s = 4). These features maps are upscaled into the HR residual image by Periodic Shuffling (PS) [2]. 
Finally, the HR output is estimated by adding the HR residual image to the bicubic interpolated LR 
image.  
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Fig. 2 Architecture of the proposed model when the scale factor is 4.  

The red arrows refer to recursive convolutional layer and d is the number of recursions. The first 
number in parentheses refers to the filter size and the second number refers to the filter number.  

2.2 Feature Extraction Network 

The feature extraction network consists of four recursive modules. Each module contains a 
normal convolutional layer and a recursive convolutional layer [4], both of which have the same 
number of filters. PReLU is used as the activation function to solve the ‘dying ReLU’ problem [9]. 
Specifically, the proposed recursive module is formulated as 

ℎ𝑖𝑖 = 𝑅𝑅𝑖𝑖
(𝑑𝑑)�𝑁𝑁𝑖𝑖(ℎ𝑖𝑖−1)�,                               (1) 

where i = 1, 2, 3, 4, ℎ𝑖𝑖−1 and ℎ𝑖𝑖 are the input and the output of the i-th recursive module, 𝑁𝑁𝑖𝑖 and 
𝑅𝑅𝑖𝑖 denote the functions of the i-th normal convolutional layer and the i-th recursive convolutional 
layer, respectively, and d is the number of recursions. Specially, when i = 1, we have 

ℎ0 = 𝑥𝑥.                                    (2) 
On the premise of certain parameters, the filter number of each recursive module is optimized for 

best performance, and the structure with decreasing number of filters is finally adopted (i.e., 
𝑛𝑛1 > 𝑛𝑛2 > 𝑛𝑛3 > 𝑛𝑛4 in Fig. 2). That is why the proposed model is called the Piecewise-Recursive 
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Convolutional Network (PRCN). Compared with SR models that have the same number of filters in 
each convolutional layer [3, 4, 6, 7], the proposed PRCN model can better extract the local features 
of the input LR image and thus results in better performance.  

The output of each convolution layer is passed to the next layer and simultaneously skipped to 
the reconstruction network. Accordingly, the output dimension N of the feature extraction network 
is formulated as 

𝑁𝑁 = 2 ∙ (𝑛𝑛1 + 𝑛𝑛2 + 𝑛𝑛3 + 𝑛𝑛4).                           (3) 

2.3 Image Reconstruction Network 

The dimension of the extracted features is rather large. A huge amount of computation is required 
when such features are directly used to reconstruct the HR image. Therefore, parallelized 1×1 
CNNs [8] are applied to reduce the input dimension and selectively retain high-order features at 
different levels. Compared with the plain structure where convolutional layers are cascaded directly, 
the parallel structure can enhance the learning ability and reduce the computational cost. Finally, the 
sub-pixel CNN [2] is used to transform the final features into the HR residual image. The HR 
prediction is obtained by adding the HR residual image to the interpolated LR image. As with 
typical residual learning networks, PRCN is designed to focus on learning residual output and thus 
significantly improves the learning performance.  

3. Experiments 

3.1 Datasets 

We randomly select 10,000 images in the CelebA dataset [10] for training and another 1,000 
images for testing. We make sure that people in the testing set do not appear in the training set. 
Center cropping is applied to the selected images to remove the unnecessary background. The size 
of cropped HR images is 128×128 pixels. The scale factor is set to 4 in all experiments. Accordingly, 
the size of input LR images is 32×32 pixels.  

Data augmentation [11] is performed on the training images. Each training image is rotated by 
90°, 180°, 270° and flipped horizontally to make 7 additional augmented versions. The total number 
of training set is 80,000 and 40 patches are used as a mini-batch. RGB images are converted to 
YCbCr images and only Y-channel is processed.  

3.2 Training Setup 

MSE-loss is adopted for training and the weight decay is set to 0.0001. The method proposed by 
He et al. [9] is used for weight initialization and all biases and PReLUs are initialized to 0. Dropout 
[12] is also applied with p = 0.8. Adam [13] with an initial learning rate = 0.002 is used for 
optimization. Learning rate is decreased by a factor of 2 if the loss does not decrease for 5 epochs. 
If learning rate is less than 2×10-5, the procedure is terminated. Training roughly takes 7 hours using 
one GTX 1070 GPU.  

3.3 Study of (n1, n2, n3, n4) and d 

In this subsection, we explore various combinations of (n1, n2, n3, n4) and d to construct 
different networks, and find the values to achieve the best network performance. First, to clearly 
show how the parameters (n1, n2, n3, n4) affect our network, we fix the number of recursions d to 1 
and change the number of filters. (64, 64, 64, 64) is taken as the reference value of (n1, n2, n3, n4). 
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Under the condition that the total parameters of the network remain unchanged, we record the Peak 
Signal-to-Noise Ratio (PSNR) under different values of (n1, n2, n3, n4). The results are shown in 
Table 1. Accordingly, we choose (96, 68, 49, 32) as the values of (n1, n2, n3, n4).  

Table 1 Performance comparisons under different values of (n1, n2, n3, n4) 
number (n1, n2, n3, n4) PSNR (dB) number (n1, n2, n3, n4) PSNR (dB) 

1 (64, 64, 64, 64) 30.937 7 (96, 64, 54, 32) 30.931 
2 (80, 63, 63, 48) 30.942 8 (96, 68, 49, 32) 30.956 
3 (80, 68, 57, 48) 30.944 9 (96, 72, 43, 32) 30.949 
4 (80, 72, 52, 48) 30.950 10 (96, 79, 32, 32) 30.899 
5 (80, 75, 48, 48) 30.952 11 (112, 55, 55, 16) 30.897 
6 (96, 60, 60, 32) 30.923 12 (112, 63, 42, 16) 30.905 

Next, we determine the best value of d. We use PSNR and computation complexity [14] as 
evaluation criteria to compare the reconstruction performance and computational efficiency under 
the different values of d. the results are shown in Table 2. 

Table 2 Comparisons of different recursions on Peak-Signal-to-Noise-Ratio and complexity 

d 1 2 3 4 5 
PSNR (dB) 30.96 30.98 31.01 30.99 30.97 
Complexity 

[k] 
318.2 474.1 629.9 785.7 941.6 

Compared with the normal convolution layer (i.e., d = 1), applying the recursive structure can 
significantly improve the performance of super-resolution reconstruction. Both performance and 
efficiency are considered and the number of recursions d is finally set to 3. Some examples of the 
proposed PRCN are illustrated in Fig. 3.  
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(a)Original face images (b)Bicubic images (c)super-resolution results (d)Ground truth 

Fig. 3 Examples of the proposed method 

3.4 Comparisons with State-of-the-Art Methods 

We use PSNR and computation complexity to compare the proposed model with several 
representative SR networks (SRCNN [1], ESPCN [2], VDSR [3], DRCN [4], SRResNet [6]). The 
results are shown in Table 3. We can see the proposed PRCN has a state-of-the-art reconstruction 
performance. It significantly outperforms SRCNN and ESPCN by 0.72 and 0.44 dB, while the 
computation complexity is 17, 495, and 3 times smaller than VDSR, DRCN and SRResNet 
respectively. 

Table 3 Comparisons with other super-resolution algorithms on PSNR and complexity 

Methods SRCNN ESPCN VDSR DRCN SRResNet PRCN 
PSNR (dB) 30.29 30.57 30.80 30.82 30.97 31.01 

Complexity [k] 918.0 39.4 10674.2 312332.8 1877.7 629.9 

4. Conclusions 

In this paper, we propose a Piecewise-Recursive Convolutional Network (PRCN) for face image 
super-resolution. Our network takes the original low-resolution images as the input and thus reduces 
the computational cost. We also optimize the number of filters and recursions in the feature 
extraction network to achieve better performance and faster computation. Experimental results 
prove that PRCN is a concise and superior model for fast and accurate face image super-resolution. 
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